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The objective of the study is to consider the dynamics and characteristics of electricity for-
ward contracts. In order to capture some of this dynamical structure, we develop a CVAR
(Cointegrated Vector Autoregressive) model for the generic electricity forward prices with
time to maturity from two to five years and a delivery period of one year. The parameters of
the CVAR model structure are estimated for all contracts separately.

In this study, we suggest that the contracts with longer time to maturity adapt market changes
more slowly even though the changes follow the same general pattern. No seasonal compo-
nents were identified, but the volatility of contract prices was dependent on the changes in the
previous weeks. Our results suggest that there was a structural break in the price dynamics
in mid-2008 that restricts the use of CVAR models. Additionally, the risk premium of the
forward contracts is discussed. The preliminary results suggest that the risk premium is not
constant over different times to maturity. This conclusion is heavily affected by the amount
of studied data.

The impact of the evolving CO2 market and possible long-term structural changes are also
discussed.
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Symbols and Abbreviations
Matrices are capitalized and vectors are in bold type.

Notation

t Observation time (mostly in weeks)
N Number of observations
yt Vector of endogenous variables
xt Vector of exogenous variables

Abbreviations

AR Autoregressive (model)
VAR Vector Autoregressive
CVAR Cointegrated Vector Autoregressive
SARFIMA Seasonal Autoregressive Fractionally Integrated Moving Average
RS-SARFIMA Regime Switching SARFIMA
EU-ETS European Union Emission Trading System
NELxY The generic xth nearest annual electricity forward contract
NELFxY Electricity forward price for year 201x
ENWSSPAV Electricity spot prices
ELGBY1x German electricity forward price for year 201x
ELGBYRx The generic xth nearest annual German
API2YR1 Price for API2 coal for xth year
CLx Crude oil price with x months to maturity
MOZx EU emission allowance prices for xth contract
GDP Gross domestic product
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1 Introduction
The purpose of this project is both quantitative and qualitative modelling of long-term
electricity forward prices. We limit our interest to long-term electricity forwards with a
delivery period of one year and a time to maturity of two years or more. The essential
part of our approach is to interpret our model and discuss its limitations considering
the market structure of electricity derivatives and changing market conditions.

The long-term dynamics of the electricity contracts differ from each other. Based on the
findings of the general features of price dynamics we also briefly discuss contracts with
longer time-spans that are not traded at present due to their low liquidity. The prices
for the annual forward contracts are not changing linearly so we are also interested in
their relative prices across the forward curve.

Based on the market data the seasonal factors are also discussed in brief in this study.
Some remarks related to the stability of the risk premium are also presented.

In addition, changes in market conditions and the technological and economic envi-
ronment affect the model largely. These phenomena will be discussed with respect to
general features of the electricity market. We have also paid attention to the long-term
perspective of the production and consumption of electricity in the time horizon of
decades rather than only a couple of years.

This report is structured as follows: In the introductory part background factors and
essential concepts will be presented as well as a brief review of the research previously
done in the field. The Materials and Methods section presents the datasets we are using
and the tools that we use for modelling. The actual results are presented in the third
section and the findings are discussed in more detail in the Discussions section. The
report ends with concluding remarks in the last section.

Later on in this report the following concepts will be referred to frequently. For the
reader’s convenience they are defined at this stage:

The spot prices tell the current balance between the demand and supply of the electric-
ity. They are usually updated hourly, whereas the closing price is the latest price of the
day which thus is the most up-to-date price until trading continues. The spot prices are
determined at the spot market where the delivery of the electricity is based on hourly
quoted chunks. The market is a day-ahead market where the need for electricity is
settled the day before the delivery.

The electricity forward contracts are financial derivatives whose payoff values are tied
to the value of electricity. The buyer of the electricity is said to hold the long position
whereas the seller has a short position (see, e.g., Luenberger, 1998). The forward
contracts are purely financial, so there is no physical delivery of energy at the time
of buying and selling.

During the trading period the forward contracts are sold in the energy market as can be
seen in Figure 1. For instance in the end of year 2011 one can buy a one year forward
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Figure 1: Illustrative figure explaining the electricity forward contract life span. The thin
black line represents the spot price and the blue thick line the forward contract price.

contract whose physical delivery of electricity starts at the beginning of year 2013. This
means that the delivery period of the contract is one year from the beginning 2013 to its
end. The maturity date of the contract is in the end of the year 2012 when the financial
payments related to the contract will begin. As there are transactions along the delivery,
one interpretation of the maturity date would be in the middle of the delivery period.
The financial payments of forward contracts are settled only during the delivery period,
thus the profit and losses are realized only when the delivery of energy starts (Botterud
et al., 2002).

In general, the risk premium means how much the expected return of a financial in-
strument must exceed the value of a risk-free option. In the case of the electricity
derivatives there is systematic price difference when considering contracts with differ-
ent times to maturity. For example, it is logical that the contract for year 2015 is more
expensive than a contract for a year 2014 even though we do not have any reason to
expect the spot prices of 2014 and 2015 to be significantly different from each other.

Generic contracts are combinations of consecutive contracts as implied in Figure 1.
For example if we have a generic time series for the second nearest contract, then we
have in the year 2011 the forward contract for a year 2013, in the year 2012 the forward
contract which maturity date is 2014 and so on. This means that the contract captures
always characteristics of the certain time-to-maturity lag.
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1.1 Background

Electricity is a commodity with special characteristics. As there exist no convenient
and economic way of storing electricity, the prices of short- and long-term electricity
contracts exhibit very different dynamics compared to other commodities. The con-
sumption and production of electricity have to match at any time and the seasonal
effects cause high volatility in price and eventually high peaks. Thus, participants in
the electricity market need to reduce price-related risk with forward trading.

The Nordic energy market has a history of two decades and is exceptionally integrated.
Nord Pool was established 1996 to attain a common electricity market for Norway and
Sweden. In the year 2010 NASDAQ OMX acquired all shares of Nord Pool and the
name of the company changed to NASDAQ OMX Oslo ASA and its trade name to
NASDAQ OMX Commodities Europe (Nord Pool, 2011). Nord Pool is nowadays the
largest power exchange in Europe.

The organization offers clearing services and access to markets of different kinds of
energy derivatives and carbon contracts to its members. The members are energy pro-
ducers, consumers and financial institutions. Altogether there are over 360 members in
18 countries (Nord Pool, 2011). Botterud et al. (2002) list four main responsibilities
of the power exchange: to operate as a physical and a financial market for e.g. forward
contracts, to provide a market reference price, to act as a neutral and reliable power-
contract counterpart to market participants, and to help to alleviate grid congestion.

The durations of the financial contracts are up to six years. Trading at Nord Pool is
not compulsory, but the Nord Pool Spot price must be used in all day-ahead cross-
border trading (Nordic Energy Regulator, 2010). The spot price is calculated from an
aggregated demand and supply of the electricity. The market is a day-ahead market
where the purchase and sale of hourly contracts cover the 24 hours of the next day.
Transmission grids in the Nordic countries were originally built to meet needs of each
country, but they are nowadays closely connected. In principle, there is only one price
for the whole market, but due to some congestions in the transmission grids, there
might be different prices over the grid (Botterud et al., 2002).

Predicting the long-term prices of electricity is especially important to the electricity
retailers; as the long-term investments including considerable risks and accurate fore-
casts of future prices help companies to adjust their production. The suppliers of the
electricity as well as consumers can hedge themselves against highly volatile spot price
in the NASDAQ OMX financial derivatives market. These contracts are purely finan-
cial contracts thus the profit and losses are realized only when the delivery of energy
starts. In our project, we focus on longer period forward contracts where the payments
are settled only during the delivery period between the keepers of long and short posi-
tions.

The Scandinavian electricity market has its own distinctive characteristics — there
are for example the peaks in the demand of electricity due to cold winter season and
the dominant position of hydro power on the supply side. Approximately 51 % of the
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electricity is produced by hydropower. The other most important sources are combined
heat and power (21 %), nuclear power (12 %) and wind power (6 %). In year 2009
the total Nordic generation capacity was 96 043 MW (Denmark 13 %, Finland 17 %,
Norway 32 % and Sweden 37 %) (Nordic Energy Regulator, 2010).

Another distinctive feature is the Nordic weather conditions, which generate seasonal
fluctuation to consumption. The winters in Denmark are not as cold as in the other
Nordic countries and it has little energy intensive industry, so the consumption of
electricity is lower than in Finland, Sweden or Norway. The influence of the climate
is clear, because the electricity consumption is considerably smaller in the warmer
years because there is no need for intensive heating. Peaks loads in the spot prices
happen usually during cold periods. Peak load is defined as the maximum instantaneous
electricity consumption or the maximum average (Nordic Energy Regulator, 2010).
The total electricity consumption has grown steadily during the last decade.

As the correlation between short-term and long-term electricity contracts is low, the
short-term contracts are not suited for hedging long-term exposures in electricity mar-
kets such as long-term procurement costs and production revenues (Povh, 2009). Con-
sequently, investors seek long-term forward contracts to hedge long-term price related
risks properly. The long-term price information can also be important with regard to
strategic decision making and policy adoption. For instance, in recent years, there has
been a shift in electricity production technology from coal and nuclear to natural gas
and renewable sources. As Povh et al. (2010) state, this ongoing shift requires investors
to have relevant information about the electricity market in the future in order to sup-
port investment decisions today.

Long-term electricity price modelling faces many challenges, such as availability of
relevant market data. Furthermore, being able to detect and include seasonal compo-
nents in long-term pricing modelling can be problematic. For example, although a sea-
sonal component is present in spot dynamics, at times of high stress from demand
or supply side it may not be very visible. In addition, there is a limited number of
monthly and quarterly forwards quoted in the market. Furthermore, electricity markets
still struggle with low liquidity, which creates more challenges for efficient hedging.
Reliable long-term forward contract could enhance this liquidity.

1.2 Literature Review

We present a brief literature survey on modelling and forecasting long-term electricity
prices. The problem of forecasting long-term electricity prices is far from simple and,
as discussed, the normal approach of using only spot prices is not relevant. Other
independent variables must be included in the model, e.g. demand estimates, factor
prices and seasonality. Also the choice of the best model is not unambiguous. This
field of science has been under adequate interest. For example, Cabero et al. (2003)
assumed that the probability distribution of the electricity spot price resembles the
Beta distribution and used linear regression for fitting its parameters. Szkuta et al.
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(2002) have used an artificial neural networks approach in short-term electricity price
forecasting.

Haldrup and Nielsen (2006) and Haldrup et al. (2010) used a vector autoregressive
model (VAR). In their model they explained the long memory of electricity prices
with a SARFIMA (Seasonal Autoregressive Fractionally Integrated Moving Average)
model to simulate the congestions in the transfer system including the seasonal ef-
fects. They also presented a 3-state regime switching model (RS-SARFIMA – Regime
Switching SARFIMA) for electricity prices which takes into account switches in con-
gestion states.

However, long-term modelling of commodity forward prices is relatively new, as the
availability of the long-term forward data remains low. In contrast to the studies where
long-term forward prices are modelled as an extension of short-term forward-price
modelling, Povh and Fleten (2009) model long-term electricity forward prices with
a vector autoregressive model (VAR). The model combines information on forward
prices of commodities from financial markets which influence electricity price and
information data on demand and supply of electricity capacity adjusted with a risk
premium which depends on the time to maturity. They argued that the variables influ-
encing the supply side of electricity markets are fuel prices, water-reservoir level in
hydro-rich systems, emission allowance prices, supply capacity and electricity prices
in neighbouring markets. The electricity prices experience a few substantial shocks
during the study period. Cointegration analysis reveals two stationary long-run rela-
tionships between all variables except the gas price, indicating that these variables
move together over time. They find some influence of the risk premium, however not
on the long-term electricity forwards at Nord Pool.

Finally, Botterud et al. (2002) focus on future and spot electricity prices. They find
that the future prices on average exceeded the actual spot price at delivery, conclud-
ing that there is a negative risk premium in the electricity futures market. This result
contradicts the findings in most other commodities markets, where the risk premium
from holding a futures contract tend to be zero or positive. They identify the difference
in flexibility between the supply and demand sides of the electricity market, leaving
the demand side with higher incentive to hedge their positions in the futures market,
as a possible explanation for the negative risk premium. In general the importance of
risk premium and its behaviour has been discussed extensively in recent research. For
example Kettunen et al. (2010) discuss the impact of the risk attitude of the retailers
and how this affects the prices.

In modelling, our approach will mostly be based on the work by Martin Povh and
Stein-Erik Fleten (Povh and Fleten, 2009; Povh, 2009; Povh et al., 2010). We will
build a CVAR (Cointegrated Vector Autoregressive) model structure for the long-term
electricity contracts with different times to maturity. The modelling will however only
provide an insight into the market data, as statistically significant modelling of this
problem is hard.
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2 Materials and Methods
2.1 Actual Market Data

Our analysis is based on actual market data from the Nordic electricity market. In
this section, we try to identify factors that are influencing the dynamics of long-term
electricity forwards. In the approach by Povh (2009) care is taken regarding the use
of data sources and we try to follow the same guidelines. Real financial markets are
complicated and not all investors share the same information. To model and analyse
long-term electricity prices we use only information that is available to everyone (i.e.
common knowledge).

The datasets that are used in this study can be divided into two types of information:
High-resolution common-knowledge information is data that is completely public and
usually the result of trading and market forces in general. Quantitative measures as
time to maturity or the time of year can also be put under this label. Data that cannot
be measured with this kind of precision is called low-resolution common-knowledge
information. Examples of such information are political decisions, political interven-
tions, aggregated data and estimated information, for example quarterly estimates of
the gross domestic product and energy consumption. In making reliable forecasts over
long time periods this kind of information is essential but causes the forecasts to de-
pend on qualitative estimates. On the other hand, short time forecasts are troublesome
because predicting low-resolution variables over short time-spans can be ambiguous.
(Povh, 2009)

To model the long-term forward prices we therefore try to restrict our interest mostly
on high-resolution common-knowledge information. However, forecasting prices over
long time horizons also require qualified guessing of future market conditions and
forthcoming changes. This information is hard to include as exact data in the scope of
our approach, but some variables will be discussed further on.

Following the path led by Povh (2009) and Povh and Fleten (2009) most of the follow-
ing data was used to model the forward price of electricity. We present these drivers
with some comments on their properties. Table 1 presents our datasets, of which not
all are used in the modelling (the particular choice of variables will be done in the
data analysis section). The same data is also used for the market structure analysis.
The data was primarily supplied by Danske Markets and the names follow the naming
convention used by Bloomberg. The data time series are included in Appendix A.

Typically in our case the same prices are present in the data twice. In the first set of
prices we have the actual contract price time series. In the second set the different
contracts of the same product have been combined into generic datasets. In these
datasets the time to maturity is fixed within each set. For instance the third year generic
data for the electricity forwards (NEL3Y) consists of the consecutive contracts and
data for each year is always the third nearest annual contracts for that specific year. To
achieve as long datasets as possible we decided to use generic data when possible.
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Table 1: The datasets that were available for the model building. All observations have
been interpolated to week level and each number of observations N corresponds to the
number of weekly observations of the data. The time series are included in Appendix A.

Description Name Start Date End Date N (weeks)
Electricity spot prices ENWSSPAV 05-Jan-2000 23-Feb-2011 582

The generic nth nearest
annual electricity
forward contract

NEL2Y 12-Jan-2005 23-Feb-2011 320
NEL3Y 08-Feb-2006 23-Feb-2011 264
NEL4Y 21-Jun-2006 23-Feb-2011 245
NEL5Y 21-Jun-2006 23-Feb-2011 245

Electricity forward
price for year 201X

NELF2Y 03-Jan-2007 23-Feb-2011 217
NELF3Y 09-Jan-2008 23-Feb-2011 164
NELF4Y 07-Jan-2009 23-Feb-2011 112
NELF5Y 06-Jan-2010 23-Feb-2011 60

German electricity
forward price

ELGBY12 12-Dec-2007 23-Feb-2011 168
ELGBY13 21-May-2008 23-Feb-2011 145

The generic nth nearest
annual German
contract

ELGBYR1 12-Sep-2007 23-Feb-2011 181
ELGBYR2 12-Sep-2007 23-Feb-2011 181
ELGBYR3 12-Sep-2007 23-Feb-2011 181

Price for API2 coal for
the nth year

API2YR1 16-Mar-2005 23-Feb-2011 311
API2YR2 12-Sep-2007 23-Feb-2011 181
API2YR3 05-Sep-2007 23-Feb-2011 182
API2YR4 05-Jan-2005 23-Feb-2011 321

Crude oil prices
CL1 05-Jan-2000 23-Feb-2011 582
CL21 05-Jan-2000 23-Feb-2011 582

EU emission allowance
prices for yearly
contracts

MOZ1 27-Apr-2005 23-Feb-2011 305
MOZ2 27-Apr-2005 23-Feb-2011 305
MOZ3 09-Apr-2008 23-Feb-2011 151

Finnish GDP GDP 05-Jan-2005 23-Feb-2011 325

The Electricity Spot Prices tell the daily price level of electricity. We use the daily
closing price of the Nordic electricity market (dataset name ‘ENWSSPAV’). The long-
term electricity forward price should reflect assumptions regarding long-term spot price
level. However, the spot price is mostly influenced by fundamental short-term drivers
such as daily and yearly behavioural and temperature cycles and daylight hours. Eco-
nomic drivers such as industrial and household consumption of electricity, which can
be modelled to some extent with low-resolution GDP estimates, have a great impact
on the spot price. Demographic drivers such as population growth and migration also
cause changes in spot price dynamics.

The Electricity Forward Prices are the forward contract prices of electricity. The
electricity forward price also serves as a proxy for expected long-term spot price, which
has an influence on long-term electricity demand, assuming long-term price elasticity
of demand (Povh, 2009). As the spot price tends to be highly volatile, hedging against
this is common. The datasets starting with ‘NEL’ are forward price data.

Prices of Electricity in Neighbouring Markets have an influence on the electricity
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forward prices due to the effect of similar dynamics over different markets. A part
of the electricity supply is also imported from neighbouring markets. This causes the
prices to follow each other over the national borders. In Finland electricity is imported
from Russia, but we use forward price data from the German market since no Russian
data is available. The name of these datasets begins with ‘ELGBY’ and they represent
the yearly futures traded up to five years ahead.

Coal Prices are linked to electricity, as coal is an important source in electricity pro-
duction and it is typically used during peaks in demand. Therefore its price has an
impact on the electricity price. Despite the fact that coal-fired power plants typically
use local coal resources, the value of this coal is measured by benchmarking it with
global coal prices usually valid for major nearby ports (Povh, 2009). The ‘API2YRx’
data is the most recently available official monthly price per tone of steam coal, x being
the number of years to maturity.

Crude Oil Forward Prices have similar relations to the electricity production process
as coal. To reflect the dynamics of oil price we use global crude oil data. ‘CLx’ is the
official settlement price for one barrel, x being the number of moths to maturity. The
long-term crude oil price is influenced by the global long-term supply and demand.

European Union Emission Allowance Prices that are available under the European
emission trading scheme (EU-ETS) which was implemented in 2005 for carbon diox-
ide (CO2) emissions. Electricity producers received a limited amount of free carbon
allowances, whereas additional allowances can be purchased in the market. (Povh,
2009) We include the emission allowance prices (dataset name ‘MOZ’) available at
Nord Pool to present the influence of the CO2 market.

The Gross Domestic Product in Finland presents dynamics that would often be re-
placed by peak dummy variables. However, we chose to include quarterly estimates of
the Finnish national economy to be able to account for drivers over the whole economy.
The quarterly estimates were interpolated using linear interpolation to week level. The
data is publicly available at Statistics Finland and it has been normalised to the refer-
ence year 2000.

Time to maturity, also addressed to as time-to-delivery, is the time to date at which
the forward contract expires. Because we are using the generic data, the datasets are not
fully continuous. Thus we decided to introduce an external variable (time to maturity)
to depict the change of the contract to the model. This sawtooth-like variable gets a
value one when a contract changes in the dataset and the value of the external variable
goes linearly to zero until a new contract emerges and the time to maturity dummy
resets to one.

The datasets vary in terms of observation time and delivery period resolution. As we
wish to minimize the influence of short-term variations in price due to different short-
term factors and, at the same time, produce an adequate data sample to obtain signif-
icant results, we use a weekly resolution. The data is downsampled to week level so

SOLIN, KATSIGIANNIS, PARKKILA, TORABIHAGHIGHI 8 (26)



AALTO UNIVERSITY, SYSTEMS ANALYSIS LABORATORY

that the week mean prices are taken from the Wednesday closing price — or the near-
est price available (nearest neighbour interpolation). In Table 1 all the data has been
sampled to matching time steps.

Instead of plain price level information, we use the conventional econometric log-level
approach, which means transforming price level information into logarithmic prices by
taking the natural logarithm of the levels. (see, e.g., Heij, 2004)

2.2 Model Structure

Vector autoregression (VAR) is an econometric method used to capture the evolution
and the interdependencies between multiple time series, generalizing the univariate AR
models. All the variables in a VAR model are treated symmetrically by including for
each variable an equation explaining its evolution based on its own lags and the lags
of all the other variables in the model. (Pindyck and Rubinfeld, 1997) In this sense a
VAR model can be interpreted in standard state–space equation form.

In the autoregressive process of order k the current observation yt is generated by past
observations going back k periods, together with a random disturbance in the current
period. We denote this process as VAR(k) and write its equation as

yt = a0 +
k∑

i=1

Aiyt−i +
m∑
j=1

Bjxt−j + εt, (1)

where yt ∈ Rn is a vector of endogenous variables at time step t and xt ∈ Rs is a
vector of exogenous variables. A ∈ Rn×n and B ∈ Rn×s are coefficient matrices and
εt ∈ Rn is the error term. Here a0 is a constant term which relates to the mean of the
stochastic process.

The cointegrated vector autoregressive (CVAR) model which can alternatively be inter-
preted as a vector error correction model (VECM) is a extension to handle cointegrated
variables. The model can be formulated as

∆yt = a0 + Πyt−1 +

k−1∑
i=1

Ai∆yt−i +

m∑
j=1

Bj∆xt−j + εt, (2)

where ∆yt = yt − yt−1 corresponds to the differentiated endogenous variables, xt ∈
Rs is a vector of exogenous variables, Ai, Π ∈ Rn×n and Bj ∈ Rn×s define the
system dynamics and εt ∈ Rn are the error terms (Pindyck and Rubinfeld, 1997).

The model building is automated in a sense that we use the Johansen cointegration
test procedure for determining the cointegrated relationships between the endogenous
variables. The cointegrated terms in the CVAR models are chosen by this test while
composing the model structure.

Furthermore the lag order k of the models is determined by the likelihood ratio test
of various model specifications by comparing the log-likelihood. The model that is
assigned with the highest likelihood is automatically chosen.
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Model validation is based on primarly diagnostic checking. The autocorrelation func-
tions for both original data and in-sample estimated forecasts of data points. The resid-
uals are analyzed by comparing them to the hypothesis that they should be both nor-
mally distributed and independent. We use the Lilliefors’ composite goodness-of-fit
test for testing against normality. The Ljung–Box Q-test, which is a Portmanteau test,
is used for testing against residual autocorrelation.

As estimation tools we use the ready-made Econometrics Toolbox by LeSage and the
Matlab Econometrics Toolbox (for details, see LeSage, 1999). All relevant tests and
estimation can be done with the help of these two toolboxes in Matlab. All data is
handled by Matlab and all tests were run with the aforementioned toolboxes or built-in
Matlab tools. In this project MathWorks Matlab 2010a was primarily used.
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3 Results
3.1 Statistical Analysis of Market Data

As presented in Section 2.1, we are using generic datasets for Nordic and German elec-
tricity prices, the electricity spot price, Finnish quarterly GDP estimates, and price of
coal, crude oil and emission allowances. The time series are presented in Appendix A.

Before the financial crisis of 2008 all datasets behaved very similarly but after it the
dynamics have differed from each other. In general the price is higher the further away
time to maturity of a contract is. There should be a small shift in generic datasets when
one contract ends and a new one begins in January but this characteristic is so small
compared to other changes that it cannot be distinguished easily.

Figure 2 shows the cross-correlations between the different generic electricity prices
with lags from minus ten to ten. All datasets have high correlation at zero lag. The max-
imum correlation lag value is −1 between NEL2Y and NEL4Y, −3 between NEL2Y
and NEL5Y and−2 between NEL3Y and NEL5Y. The longer the difference in time to
maturity, the farther away the correlation lag. One explanation to this is that the con-
tracts with longer times to maturity are traded less frequently and their prices are less
volatile. In other words, NEL5Y reacts more slowly to same phenomena than NEL2Y.

The same kind of behaviour can be seen in figures presenting the generic datasets for
German electricity prices as well as in the non-generic datasets in Appendix A. We
decided to use generic German forward prices in our model to depict the influence
of imported electricity. Because we only have datasets for generic contracts for the
first, second and third nearest contract, we use the second nearest in the model for the
corresponding Nordic electricity price and the third nearest for the three other models.

Nordic electricity spot price is very volatile and does not include any kind of trend.
The price level is higher during winters than summers because heating play a big part
in electricity demand in Nordic countries. Big peaks in prices are usually encountered
during extremely cold periods.

Coal prices exhibit same kind of dynamics as the electricity prices. Differences be-
tween contracts were small prior to the recession and there was a growing trend in
prices in general. The drop in prices in the autumn 2008 was very deep and after that
differences between contracts have been larger than before. Datasets for API2YR1 and
API2YR4 are the longest and capture same price dynamics so we decided to use the
price of API2YR1 for all our models.

We have two datasets for the crude oil price. The general features of CL1 and CL21
are quite similar but CL1 is more volatile. Because we are interested in long-term
contracts, dataset CL21 is used in all our models. Both sets depict also the general
trends in economy.

Emission allowance prices have not been traded for very long. Contracts with longer
time to maturity tends be more expensive than ones with shorter time to maturity. Prices
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Figure 2: Cross-correlation between the electricity forward prices with lags
−10, . . . , 0, . . . , 10. The figure is interpreted as a cross-correlation matrix; the correla-
tion between the row data and the column data is shown in each plot. The maximum
correlation value is emphasised.

were quite volatile prior to the financial crisis. Because the dataset for MOZ3 begins
only as recently as 2008 and differences between MOZ1 and MOZ2 are not large, we
decided to use MOZ1 in all our models.

We use the Finnish gross domestic product adjusted with a trend in our model. The
dataset captures general features of economy including fast recovery from recession.
Last data points were extrapolated linearly for early 2011. This is quite an optimistic
forecast but consistent with most current estimates as of spring 2011.

Appendix B presents statistical plots for logarithmic datasets (log-levels) used in the
model building. The trend is in a sense removed and the figures represent relative
changes in price levels. From the histograms with normal fits can be seen that most
of our datasets cannot be considered normally distributed. This was expected because
datasets are time series reacting to various exogenous aspects of e.g. weather, changes
in the economy and market. In some cases (e.g. NELF2Y, CL21 and MOZ1) there
are two peaks in the histogram. This is probably consequence of the dynamic change
due to the financial crisis. The data does not follow same distribution before and after
mid-2008.

Most of the datasets are also non-stationary. As discussed, the dynamics of some
datasets change quite dramatically after year 2008. These kinds of shocks or structural
changes are not so uncommon and it would be sensible to assume that the statistical
characteristics of time series would remain unchanged.

SOLIN, KATSIGIANNIS, PARKKILA, TORABIHAGHIGHI 12 (26)



AALTO UNIVERSITY, SYSTEMS ANALYSIS LABORATORY

In studying the autocorrelations of the log-level and differentiated log-level datasets,
we notice that the one week lag is quite high for all contracts but absolutely value of
two and three week lags are much smaller. The dependence between consecutive values
does not stretch over many lags. This means that if price has changed considerably
during the couple of previous week it will presumably change a lot in this week also.

There is no quarterly or yearly correlation between observations as seen in the sample
autocorrelation plots in Appendix B. Some yearly correlation could have been expected
because change of the contract for generic datasets. To some extent this is caused by the
aliasing effect of the week-level downsampling. In addition, some yearly correlation
could have been assumed because the price seems to be higher during cold periods.
On the other hand there are also other aspects creating higher prices for some periods
that do not follow yearly fluctuation so clearly. For instance the amount of electricity
produced with hydropower depends heavily on the weather.

The autocorrelation and partial autocorrelation plots of two and three year Nordic non-
generic electricity prices are clearly different. This cannot be spotted in the plots of the
generic contracts. The reason is that the datasets for 2014 and 2015 prices are quite
short starting 2009 and 2010. This is why there has been no big shocks influencing the
price dynamics.

All datasets have a high peak at lag one in the partial autocorrelation plot that deter-
mines the degree of the matching AR-part. This means that it should be one in each
model. For the shortest time series (NELF4Y and NEF5Y) also some bigger lags show
high peaks but these results are inaccurate because of the short time series.

3.2 Estimation of CVAR Models
with Different Times to Maturity

We estimated four separate models corresponding to the different generic datasets of
the electricity forward prices (NEL2Y, NEL3Y, NEL4Y, NEL5Y). We used seven en-
dogenous candidate variables for each. These included generic German electricity for-
ward contracts, coal price, crude oil price, emission allowance prices and linearly inter-
polated quarterly observations of the Finnish GDP. We also have a variable representing
the sawtooth-like time to maturity cycles.

We used a multiply lagged CVAR model to model the weekly price levels. All variables
were considered endogenous in CVAR sense, and the price levels were converted to
log-levels. The estimation was done by using brute-force comparison of the different
models. We estimated models corresponding to all combinations of our variables. This
was no computational burden as it only meant estimating(
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+

(
7

2

)
+ · · ·+

(
7

7

)
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different models. The number of available data points was restricted by the shortest
available data series, but due to a clear change in dynamics prior to mid-2008 we
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Figure 3: Out-sample one-step-ahead forecast for electricity forward prices. Only the
electricity forward component is visualized. A number of 81–137 datapoints have been
used to predict the closing price the following Wednesday.

also excluded some half a year of data before this point. The Johansen test was used
for determining the optimal cointegration relationship, and the likelihood ratio test
provided the optimal lag length.

After we estimated 127 different models for each four datasets, we used the adjusted
R2 and residual analysis for the model selection. The model combinations were ranked
individually and then the intersection of sets corresponding to the best models were cal-
culated. This resulted in proposing two different models that were performing equally
well in estimating results for different times to maturity. Finally, inspecting the statis-
tical properties of the coefficient matrices left us with one model.

The chosen model is a CVAR model of degree 7 and lag count 3. The models are far
from well-behaved, and they can be described as the least bad choices. The lack of data
forced us to do some compromisses in composing the datasets for each model. The
final models were estimated using these four dataset combinations: the generic con-
taracts with time to maturity of two years (NEL2Y, ELGBYR2, ENWSSPAV, MOZ1,
CL21, API2YR1, GDP), the generic contracts with three years to maturity (NEL3Y,
ELGBYR3, ENWSSPAV, MOZ1, CL21, API2YR1, GDP), the generic contracts with
four years to maturity (NEL4Y, ELGBYR3, ENWSSPAV, MOZ1, CL21, API2YR1,
GDP), and the generic contracts with five years to maturity (NEL5Y, ELGBYR3, EN-
WSSPAV, MOZ1, CL21, API2YR1, GDP). Notably the time to maturity dummy vari-
able was rejected.

The adjusted coefficient of determination R2 (the non-adjusted R2 in parentheses) for
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Figure 4: Out-sample multi-step-ahead forecast for electricity forward prices. Only the
electricity forward component is visualized. Each curve corresponds to different generic
contracts.

the electricity forward price were R2 = 0.36 (0.48), 0.38 (0.49), 0.48 (0.58), and 0.37
(0.48). The residual normality tests (the Lilliefors’ composite goodness-of-fit test) im-
plies that normality cannot be rejected at a 5 % significance level for all except the
GDP and CL series. The spot price also caused non-normal residuals for some models.
The independence of the residuals was tested using the Ljung–Box Q-test for autocor-
relation. For a tolerance level of 0.01 the null hypothesis of no autocorrelation can be
accepted for all except the CL series. Residual cross-correlation was clear between the
residuals of the Nordic and German time series and the German series and coal.

The error correction term consist in all models of three cointegrated factors. The Jo-
hansen test chose the generic forward price (NELxY), the generic German forward
price (ELGBYR) and the GDP dataset to present the long-term dynamics in the model.

The models try to capture the dynamics of the different generic electricity forward con-
tracts. The vector models simultaneously also model the dynamics of all the included
endogenous variables. We however restrict our interest purely to the electricity price
component.

We test the forecasting power of the models by using out-sample one-step-ahead fore-
casting. This means that we have used only data from the in-sample for estimating the
model and then tried to forecast data points in the out-sample with the help of this
model. In other words, we use available data up to the current week to predict the next
week’s Wednesday closing price of the electricity forward contract. Figure 3 shows
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one-step-ahead forecasts accomplished with models estimated with only the prior in-
sample data. As can be seen in the figure, there are clear differences between the four
generic datasets.

Forecasts regarding longer time-spans are problematic. We present a simple out-sample
multi-step-ahead forecast for the electricity forward components in each model. Fig-
ure 4 shows a one-year forecast for each model. The short memory (three steps) and the
cointegrated variables of the model turns the forecast into a linear trend. Nevertheless,
the different long-term equilibria of the different generic contracts differ quite a bit.
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4 Discussion
4.1 Interpreting the Modelling

In this study we estimated a 7-dimensional CVAR model structure that was tested
by fitting the parameters to match generic electricity forward contracts with different
times to maturity — in this case 2–5 years. The outcome was that this resulted in
unreliable models, but still, the models were able to capture some useful information
about the forward price process. In the models, the value of the adjusted coefficient of
determination R2 spanned from 38 % to 48 % (unadjusted 50–60 %).

The Johansen test chose three cointegrated variables to account for the long-term dy-
namics of the model. These were the generic forward price, the neighbouring market
price and the interpolated quarterly gross domestic product.

Model validation proved that the models suffered primarily from the lack of infor-
mation. The datasets incorporated strong cross-correlation, which resulted in non-
significant parameter estimates and gap between the adjusted and unadjusted coeffi-
cient of determination R2.

We chose to include the gross domestic product (GDP) in the model as a low-resolution
common knowledge factor of the current state of the economy. The quarterly anounced
GDP captures factors that the other datasets clearly fail to cover. In forecasting how-
ever, the model is depending on capturing the dynamics of the GDP estimate as well
which is troublesome. In practice including more variables presenting low-resolution
factors can make the model prone to mistakes by putting weight on subjective factors.

We also presented both a one-step-ahead and a multi-step-ahead forecast for one year.
These were visualized in Figures 3 and 4. The out-sample one-step-ahead forecast
performed acceptably in estimating the general direction of the market over a one-
week time-span. The short memory of our models with only three lags had difficulties
in adopting dynamics over longer time-spans. The multi-step-ahead forecast present
the model’s view of the general direction of the electricity forward market price.

During the estimation we noticed that there is a clear change in dynamics starting
summer 2008. This change is most probably due to the financial crisis and changes in
market conditions caused by it. This is why special care should be taken when using
data prior to this point for forecasting future prices. The forecasts in Figure 4 are based
on data after July 2008. The forecasts resemble linear extrapolation of the data, but
notably the forecast remains very much the same even if only data from January 2009
onward is used.

One interesting factor is how these results could be generalized to even longer forward
contracts. We note that even if the models fail to capture many aspects of the market, the
hypothesis, that the drivers of the market could be brought into a common formulation,
cannot be rejected. The performance of the models is similar for each time-to-maturity.

The CVAR family of models is useful in modelling and forecasting many kinds of
econometric conditions, preferably over short time-spans. However, care must be taken
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when using this type of structural models for building models over long time periods.
Most notably, if there is no permanent price process to model or the market is under-
going constant changes CVAR estimates probably result in unreliable forecasts.

4.2 Long-Term Versus Short-Term Dynamics in Electricity
Contracts

The electricity market forecasting is a trade-off between identifying short and long
drivers in the dynamics. In the Nordic electricity exchange Nord Pool, electricity is
traded on the day-ahead spot market and derivatives market. We have restricted our
interest to the very short and very long-term dynamics regarding spot and forward
prices, leaving out the future contracts with time-to-maturity under one year.

Empirical research has shown that commodity prices have higher volatility in short-
term forward prices and lower volatility of long-term forward prices (Bessembinder
and Lemmon, 2002). Furthermore, short-term forward prices can be more sensitive
than long-term forward prices. This will be discussed in more detail in Section 4.4,
Stability of Risk Premium, since the time-to-maturity also affects the adjustment to
risk.

In this study we have been able to confirm that the time to maturity affects the be-
haviour of the forward price. The nearer the maturity, the more actual information is
linked to the forward price. This results in the forward price following the tightly the
spot market price as the delivery starts draws nearer. In Section 3.1, Statistical Analy-
sis of Market Data, we were able to identify that the 2-years-ahead and 3-years-ahead
forward price follow the spot price dynamics within the same week, whereas the 4-
years-ahead forward price and 5-years-ahead forward price adopt slower with about
one and four weeks of lagging.

We can speculate that the short-term and mid-term contracts are mainly used for hedg-
ing uncertain future consumption and electricity price spikes. On the other hand we can
assume that the very long contracts are often used for hedging long-term production of
producers. This affects both the risk premium and the market dynamics, which might
explain the deviant behaviour of the 4- and 5-years-ahead forward contracts.

As stated in many studies before, we agree that the models designed for capturing
short-term dynamics cannot be generalized in the case of electricity to cover the dy-
namics in the longer end of the curve.

4.3 Seasonal Factors

In all non-generic electricity prices (NELFxY and ENWSSPAV) the couple of first
lags are significant in the autocorrelation plots of differentiated datasets. As discussed
in Section 3.1 this means that the volatility of the electricity price depends on the
volatility over the previous weeks. For example, if the spot price of the electricity has
increased quickly it is likely that it will drop in the following week (the correlation at
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lag one is negative). This means that there is no clear trend in the behaviour of the spot
price. On the other hand in the case of NELF2Y the first lag is positive which means
that the price has a tendency to continue in the same direction, but this phenomenon is
not as clear as in the case of the spot price.

Electricity spot price is very volatile and reacts strongly on changes in the weather.
In general price is higher during winter than during summer and peak loads happen
during the coldest periods. It can be observed that the electricity spot price increases in
the beginning and the end of the years (except for the years 2004–2006) that is during
winter time in — this can be confirmed in Appendix A.

However, in Appendix B the lags around 52 weeks in the autocorrelation plot of nei-
ther the differentiated nor non-differentiated dataset are distinctive. The cold periods
are not each year matching the same weeks and there are also other factors creating
fluctuation. Each explaining variable might have its own seasonal pattern and therefore
the electricity prices follow a trajectory for which is difficult to define the existence
and the pattern of seasonality.

There is no clear seasonality in the non-generic electricity forward prices either. In
the autocorrelation plots the lags around 52 weeks are not unusually high and do not
indicate a yearly seasonal factor. The current weather should not have influence on the
forward price because the contract is done for whole year in future. Nevertheless we
assumed that the price of forward contract is higher in the end of year despite how long
time it is until the maturity of the contract.

In autocorrelation plots of NELF2Y and NELF3Y there are some significant lags
around 26 weeks that equals half a year. In addition, lags around one year are very
distinctive in the partial autocorrelation plots of NELF4Y and NELF5Y. This gives
reason to expect that some kind of seasonal pattern exists.

4.4 Stability of Risk Premium

Because there is a risk of losses related to financial contracts their expected profit
must exceed one of the risk-free assets. The difference in expected returns, or the price
of the risk, is called as a risk premium. Usually the price of a forward contract can
be estimated based on the spot prices and then the contracts can be compared with
risk-free assets to calculate risk premium when arbitrage condition holds (see, e.g.,
Luenberger, 1998).

However, in the case of electricity the normal approach is not possible because it is
not economically efficient to store electricity. Povh and Fleten (2009) argued that the
risk premium is influenced mainly on time to maturity. In their empirical study Diko et
al. (2006) found that the risk premium of a contract decreases as the time to maturity
increases. In their model the risk premium of the forward contract is determined by the
skewness and variability of the spot price.

There are also some other factors that may have an influence on the spot prices. The
effect of the price spikes due to seasonality and price level decreases when considering
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Figure 5: The evolution of the risk premium for three different times to maturity. The
premium is illustrated as the relative difference to the 2-years-to-maturity contract. The
error bars show the standard deviation of the estimates.

forward contracts with long maturities. As we assumed in our approach, the effect of
possible speculators is probably negligible because electricity markets are not very tied
with other asset markets (Bessembinder and Lemmon, 2002).

Analysis of market data suggests that the risk premium is clearly affected by time to
maturity. In our study we were able to find alternating behaviour in the risk premium
over the past six years. Figure 5 shows the relative risk premium obtained by assuming
that the nearest available generic contract incorporate our best knowledge of the true
price process of the electricity forward price (see Section 4.2). Our interpretation of
the bar plot suggests that negative risk premium values can be explained by two-way
hedging.

The contracts are used for hedging both uncertain future consumption and electricity
price spikes, and on the other hand, production of producers. The one of these being
more dominant decides the positivity or negativity of the premium.

4.5 The Impact of the Evolving CO2 Market

To reduce CO2 emissions the European Union has implemented a trading scheme (EU-
ETS, The European Union Emissions Trading System) where emission allowances
can be bought. This market is young; its first pilot phase ran from 2005 to 2007. The
reduction targets are stricter in phase two which runs till 2012 (Fell, 2010). The new
trading system phase starts 2013 with a tighter emission cap and stricter rules. As this
market evolves its influence on electricity prices will presumable rise.
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In general the determinant elements of electricity prices are more expensive and easily
adjustable coal and oil prices instead of hydropower despite its large share. As we dis-
cussed both the coal and crude oil prices have high correlation with electricity forward
prices. Fell has found that coal and natural gas prices influence electricity prices. In
addition, Fell discusses that the causality goes also in a reverse direction.

The trading of emission allowances will thus affect a marginal price of electricity and
decrease its demand. Fell (2010) argued that because of the elasticity of electricity
prices the burden due to allowances goes primarily to the consumers. This is especially
interesting in Finland, Denmark and Sweden where nonrenewable sources of energy
are used extensively compared with Norway (Nordic Energy Regulator, 2010). The
structure of Nordic market is somewhat different from other markets; not only the
dominant position of the hydropower, but also well-functioning energy markets are
likely to soften the impact of emission allowances.

The time series of the emission allowance prices are presented in Appendix A. The
prices of ‘MOZx’ are volatile before the structural change in mid-2008. After that the
price has fluctuated inside of only five level units. This dramatic change can be seen
also from histogram as discussed in the Section 3.1, Statistical Analysis of Market
Data. It is ambiguous which part is due to the change of the trading scheme and which
because of a deep drop in macro economy due to the financial crisis.

4.6 Practical Questions Regarding the Long-Term Perspective

Our approach concentrates mainly on the analytical modelling of the electricity mar-
ket. However, there might be some major structural changes in the future which will
influence the demand and supply of electricity so that models based on historical data
will be invalid. Any major changes in the technology or economic can considerably
change price dynamics as can be seen in the figures of the electricity forward contracts
in Appendix A; the price dynamics of the forward contracts are different before and
after price peak due to financial crises of 2008.

The total demand of electricity in the whole world is predicted to grow. U.S. Energy
Information Administration (EIA) (2010) forecasts that electricity consumption grows
by half from 2007 to 2035 (reference case without prospective legislation or policy
changes). Most of this growth comes from developing countries; the increase in OECD
counties is only about 14 percent. In the Nordic markets this means that the challenge
of the future is not to expand the supply side considerably but shift production to
renewable energy sources. If storing or transferring is more economically efficient in
future this would link the Nordic market to the global change.

One of the fundamental phenomena is the growing concern about climate change and
its consequences. A good example of this is the trading of CO2 emissions as discussed
in Section 4.5, The Impact of the Evolving CO2 Market. This motivates the use of re-
newable energy sources but also affects consumers and policy makers’ opinions. Even
though it is impossible to make accurate forecast of future events spanning decades,
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electricity policy must be considered with long time periods. The most of the near in-
vestments to nuclear power and power plants will still be in use in 2050. Also many
long-term public and private investments (e.g. traffic and construction) can be done
energy efficient way. Some of the new technologies (e.g. electric cars) will eventually
increase demand of the electricity because their purpose is to decrease dependency
from oil (Finnish Energy Industries, 2009). In addition it is expected that the price of
the oil will grow as the amount of untapped oil decreases. If international agreements
are not made to prevent use of coal, its use will stay relatively high — most of all in
fast growing Asian countries (U.S. Energy Information Administration (EIA), 2010).

The international pressure to reduce CO2 emissions makes renewable energy sources
and nuclear power more and more interesting in the future. In the Nordic countries,
as in most developed countries, hydroelectric resources are exploited comprehensively
(U.S. Energy Information Administration (EIA), 2010). Thus the more extensive use
of nuclear power was considered as a part of the solution, but recent events in Japan
may change this trend.

The special characteristics of the Nordic electricity consumption are electricity insen-
sitive industry and need for heating due to cold winters. Approximately 45 percent of
electricity is consumed by industry (Finnish Energy Industries, 2009) which is also
an important player in the electricity market. As discussed, electricity derivatives are
not used in a speculative manner in general, but actually to hedge against volatile spot
price. The demand of electricity and activity of the derivatives market will depend on
whether the amount of electricity intensive industry decreases or increases in the forth-
coming ten years.

Most of the electricity in the Nord Pool area is produced with hydropower but it is not
the dominant element in the formation of the electricity prices. It is possible that the
price of the electricity will fluctuate more than it has previously done as the competition
in the electricity market increases (Fortum, 2007). Especially interesting is the market
of long-term forward contracts which can make prices more volatile in the future. Most
of imported electricity to Finland comes from Russia. The electricity derivatives market
is only just developing there but will probably increase competitiveness of the market
in the long run.
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5 Conclusions
In this project we have been able to identify and confirm two kinds of problems regard-
ing modelling of long-term electricity prices. Firstly, there are several complications
regarding structural model building of the electricity market. Secondly, there are in-
teresting phenomena regarding the behaviour of electricity forward contract data. The
aspects of these findings can be summarized as follows:

We suggest there is a structural break happening around summer 2008. This is no
wonder due to the financial crisis and the evolving market of both long-term electricity
contracts and behaviour of the market. This restricts the use of data prior to this point
in estimating parameters for structural models. Notably models in (Povh and Fleten,
2009; Povh, 2009) were estimated on data and assumptions prior to the suggested
break.

This also restricts the use of structural models in approximate dynamical modelling of
the phenomena behind the market behaviour regarding the electricity forward price.
We also suggest the CVAR family of models might fail to capture essential points of
the problem: Most notably, if there is no one actual permanent price process to model.
Therefore online methods taking into account the changing of the background pro-
cess, should probably be considered. To be considered in future approaches are hidden
Markov model and other incarnations of Bayesian network models (e.g. Bayesian VAR
or more sophisticated online methods). Bayesian methods could also be used to incor-
porate the known uncertainties in the data and future market conditions.

In addition to the restrictions caused by the model structure, a never-ending problem
will be the lack of market data in the field. Trustworthy forecasts in the long-term
horizon will lack the ability of predicting major changes in market conditions — such
as new innovations, political factors and changes in the environment.

As has been suggested in studies before, we also bring forward the thought that there
are differences in the long- and short-term contract dynamics. Our data analysis also
suggests this. Most interestingly, the cross-correlation of the future prices show a clear
lagged correlation pattern structure between the contracts with different times to matu-
rity. This pattern reveals that the longer the time to maturity the slower the adoption to
the current market changes. This correlation lag is 1 week for the four year to maturity
generic contract and 4 weeks for the five year to maturity generic contract.

There are also clear signs that the contracts with very long time to maturity incorpo-
rate quite different dynamics compared to their shorter term counterparts. This phe-
nomenon is suggested to rely on two factors, which are the different clientèle and the
low liquidity.

Seasonal factors do not seem to play any evident role in the electricity forward contract
prices. We conclude that there probably is some sort of seasonal influence, but it is
hidden behind stronger influence from other factors.

To draw conclusions about the very long-term behaviour of electricity forward prices,
qualitative methods have to be used instead of relaying on quantitative tools.
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We were also able to identify some aspects regarding the risk premium. It appears that
the risk premium is not stable over the forward curve. Furthermore we conclude that in
the case of electricity two-way hedging can be seen in the risk premium. This seem to
change over time and reflect the attitude of both the producers and consumers.
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Appendix A:
Market Data
The datasets that were studied in this project are shown in the following time series
plots. Similar products are grouped under same labels and shown atop of each other in
same graphs. The x-axis values are downsampled to week level using nearest neighbour
interpolation, and the length of the series vary from ten years to thirteen months. The
y-axis show the unaltered price level. The value is visualized with a dot — the lines
connecting the dots are linearly interpolated for visualization purposes.
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Appendix B:
Figures for Statistical Analysis
The following figures show some statistical plots for each dataset. The upper left figure
shows the data sample values in logarithmic levels. The same data is interpreted as a
histogram in the upper right figure together with a fitted Gaussian normal curve for
comparison.

The two lower figures show the sample autocorrelation and partial autocorrelation
functions. The autocorrelation function on the left side is shown in red for the actual
log-levels and in blue for the differentiated log-level data. This is handy especially in
the cases where the autocorrelation plot shows no stationarity for the non-differentiated
values. The quarterly lags are highlighted in black dots.
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